Как устроен холодильный компрессор?
Содержание
Работа бытового и промышленного холодильного оборудования напрямую зависит от циркуляции хладагента, отвечает за этот процесс компрессорная установка. По сути, это самый важный элемент конструкции, без которого домашний холодильник заинтересует только приемщиков вторсырья. Чтобы произвести ремонт этого устройства или произвести замену, важно понимать принцип его работы. В данной публикации мы расскажем о внутреннем устройстве различных компрессоров бытовых холодильников и их особенностях.
Кратко о типах оборудования
По принципу работы данное оборудование можно разделить на четыре вида:
- Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
- Абсорбционное, для работы использует не электрическую, а тепловую энергию.
- Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
- Компрессорное.
Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.
Компрессор для холодильника: принцип работы
Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.
Рис. 1. Принцип работы холодильной установки
Обозначения:
- А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
- B – Компрессорный аппарат.
- С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
- D – Капиллярная трубка, служит для выравнивания давления.
Теперь рассмотрим, алгоритм работы системы:
- При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
- Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
- Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.
Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.
Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.
Классификация компрессоров в холодильном оборудовании
Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:
- Динамический. В таких устройствах циркуляция хладагента производится под воздействием вентилятора. В зависимости от конструкции последнего их принято разделять на осевые и центробежные. Первые устанавливаются внутрь системы, и в процессе работы нагнетают давление. Их принцип работы такой же, как у обычного вентилятора. Осевой компрессор
У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.
Центробежный компрессор в разрезе
Основной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.
- Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
- Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.
Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.
Устройство поршневого компрессора холодильника
Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.
Внешний вид поршневого компрессора со снятым верхним кожухом
При включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение. В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор. Данному процессу способствует система клапанов, открывающаяся и закрывающаяся при смене давления. Основные элементы поршневой конструкции представлены ниже.
Конструкция поршневого компрессора в виде схемы
Обозначения:
- Нижняя часть металлического кожуха.
- Крепление статора электромотора.
- Статор двигателя.
- Корпус внутреннего электромотора.
- Крепеж цилиндра.
- Крышка цилиндра.
- Плита крепления клапана.
- Корпус цилиндра.
- Поршневой элемент.
- Вал с кривошипной шейкой.
- Кулиса.
- Ползунок кулисного механизма.
- Завитая в спираль медная трубка для нагнетания хладагента.
- Верхняя часть герметичного кожуха.
- Вал.
- Крепление подвески.
- Пружина.
- Кронштейн подвески.
- Подшипники, установленные на вал.
- Якорь электродвигателя.
В зависимости от конструкции поршневой системы данные устройства делятся на два типа:
- Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
- Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).
В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.
Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.
Устройство роторных механизмов
Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.
Внешний вид двухшнекового (ротационного) компрессора
Внутри компрессора фреон, попадая в сжимающийся «карман» выталкивается в отверстие небольшого диаметра, чем создается необходимое давление. Несмотря на относительно небольшую скорость вращения роторов, создается необходимый коэффициент сжатия. Отличительные особенности: небольшая мощность, низкий уровень шума. Основные элементы конструкции механизма представлены ниже.
Конструкция линейного роторного компрессора в виде схемы
Обозначения:
- Отводной патрубок.
- Отделитель масла.
- Герметичный кожух.
- Фиксируемый на кожухе статор.
- Обозначение внутреннего диаметра кожуха.
- Обозначение диаметра якоря.
- Якорь.
- Вал.
- Втулка.
- Лопасти.
- Подшипник на валу якоря.
- Крышка статора.
- Вводная трубка с клапаном.
- Камера-аккумулятор.
Устройство инверторного компрессора холодильника
По сути, это не отдельный вид, а особенность работы. Как уже рассматривалось выше, мотор установки отключается при достижении пороговой температуры. Когда она поднимается выше установленного предела, производится подключение двигателя на полной мощности. Такой режим запуска приводит к снижению ресурса электромеханизма.
Возможность избавиться от такого недостатка появилась с внедрением инверторных установок. В таких системах двигатель постоянно находится во включенном состоянии, но при достижении нужной температуры снижается его скорость вращения. В результате хладагент продолжает циркулировать в системе, но значительно медленней. Этого вполне достаточно для поддержки температуры на заданном уровне. При таком режиме работы продлевается срок службы и меньше потребляется электроэнергии. Что касается остальных характеристик, то они остаются неизменными.
Рекомендуем изучить:
- Ремонт холодильника daewoo своими руками
- Клапан электромагнитный соленоидный нормально закрытый
- Ремонт кондиционера самсунг своими руками
Те, кто знают принцип работы двигателя внутреннего сгорания, могут легко догадаться, что происходит внутри компрессора. Там также находится поршень, а тоже установлена система клапанов. Испаренный фреон проходит и сразу же нагревается от сжатия, затем выходит под давлением в сторону конденсора. После этого он легко преобразуется в жидкое состояние, отдавая энергию, чтобы после пойти на повторный цикл через капиллярный расширитель.
Главная задача состоит в том, чтобы фреон постоянно циркулировал, как кровь по венам. Вот поэтому зачастую компрессор еще называют сердцем холодильника. Но они могут быть различные, инверторные и простые, то есть, перечислять долго – вступления для этого мало. Давайте рассмотрим, устройство компрессора подробней.
Классификация компрессоров в холодильном оборудовании
Здесь нужно сказать спасибо Быкову А.В. за отличный справочник по компрессорам для холодильников 1992 г. издания.
Вы, естественно, слышали, что в стандартных бытовых холодильниках поршневые компрессоры, и до сих пор считаете, что корейцы, разработав в 1981 г. конструкцию двухшнековой соковыжималки, на самом деле открыли что-то новое? Это полное заблуждение! Винтовые компрессоры существуют с 1878 г., именно с этого времени используются роторы, которые крутятся навстречу друг другу, для создания давление. У винтовых компрессоров в холодильнике, в отличие от поршневых, есть целый ряд преимуществ:
- Отличный коэффициент сжатия, он, как правило, определяется качеством изготовления, обработки деталей, выдержкой заданных размеров, посадок и допусков. Проще говоря, необходима высокая технологичность.
- Постоянная скорость кручения валов не зависит от давления в системе. Это дает всем показателям винтового холодильного двухроторного компрессора повышенную стабильность в различных условиях.
- Возможность плавной регулировки мощности холодильника обычным изменением скорости кручения роторов. Это довольно удобно в инверторных холодильных системах управления.
- Специфика конструкции такая, что не находится деталей, которые несут высокую нагрузку, благодаря этому агрегат получается довольно долговечным. В паровую камеру добавляется впрыском масло.
Помимо этого, относительно промышленности есть и еще ряд основных преимуществ винтовых двухроторных компрессоров, в отличие от поршневых:
- Меньше размеры непосредственно компрессора холодильника.
- Относительно небольшой уровень шума, что дает возможность избежать в ряде случаев проблем с установкой холодильника.
- Низкий уровень вибраций холодильника. В результате этого не нужно создание прочного и тяжелого фундамента.
Недостаток только один:
- Небольшое КПД, в случае преобразования фреона из одного состояния в иное непосредственно внутри корпуса холодильника. Это объясняется постоянной скоростью кручения валов и различным уровнем сжатия по этой причине. Поршень-то вращается, пока есть силы, а шнеки мелют, не обращая на что-то внимания. Естественно, когда хватает мощности.
Вот простейшие факты. Но как работает это оборудование, и какие могут быть компрессоры в холодильнике? Данный класс оборудования делится на типы и подтипы
Динамический тип:
- Подтип осевые;
- Подтип центробежные.
Тип поршневые:
- Подтип с коленчатым валом;
- Подтип поступательные.
Тип ротативные:
- Подтип роторные: однороторные и двухроторные.
- Подтип с катящимся ротором.
- Подтип спиральные.
- Подтип пластинчатые.
- Подтип роторно-поршневые.
Итак, видно, какое количество может быть устройств, и многие из них нашли свое применения.
Динамические компрессоры
В отличие от объемных, данные устройства пользуются «живой» силой лопастей. Если в поршневых и их аналогах вся нагрузка находится на жестких конструкциях, то тут работа происходит за счет вентилятора. Кто знаком с вентиляционными системами и устройствами кондиционирования уже заметили сходство в названиях. И оно вполне логично: внутри динамических компрессоров находятся вентиляторы двух видов:
- центробежные;
- осевые;
Большинство читателей уже поняли смысл, но мы все же поясним, что:
- Центробежные работают благодаря тому, что каждое тело, которое перемещается по кругу, пытается выйти по прямой с орбиты.
- Осевые вентиляторы — это именно то, чем мы пользуемся в жару для обдува. Только это устройство устанавливают вовнутрь патрубка, чтобы образовалось давление в необходимом направлении. Благодаря этому среда перемещается под воздействием крутящихся лопастей.
Минусы динамических компрессоров явны: в них нет возможности получить хороший коэффициент сжатия, а соответственно, сложно и создать повышенное давление. Например, холодильные устройства нагнетают фреон до 20–30 атм., а многие говорят, что и это не предел. Это довольно высокие данные. Но конструкция динамических компрессоров относительно простая, а это хорошо. Требования к конструкции, наоборот, низкие, и это также отлично.
Поршневые компрессоры
Способ работы компрессора холодильника сильно похож на одноцилиндровый двигатель внутреннего сгорания. Внутри устройства находится такой же коленчатый вал, приводящийся в движение электромотором. Но есть и другая конструкция, она более экономичная и легче управляется инверторной системой образования импульсов.
В данном случае находится определенный шток с поршнем в конце, который расположен внутри проволочной катушки. Проходящий ток заставляет систему делать поступательные перемещения, благодаря этому и работает холодильник. Сегодня такие технологии являются наилучшими, и корейцы активно используют их в своих изделиях, о чем и создают поучительные и хорошие видеоролики.
В рабочей камере находятся 2 клапана – расходный и приточный. Как правило, они находятся на стенках. Когда же компрессор прямоточный, то вход иногда устанавливается на цилиндре. Но эта конструкция мало распространена. Клапан в дне поршня увеличивает массу движущегося элемента, также тяжело и обеспечить необходимые проходные отверстия. Потому сейчас в технике устанавливаются поршневые непрямоточные компрессоры.
Роторные компрессоры
Двухроторные компрессоры считаются абсолютным аналогом двухшнековой соковыжималки. Вот лишь, как правило, неравнозначны винтовые спирали. В ведущем роторе находится 4 выступа с немного округленными верхушками, под них на ведомом сделаны 6 ложбинок требуемого профиля. Оба вала размещаются в двойной цилиндрический корпус и по всей длине касаются друг друга. Вращение идет навстречу.
Выходное и заборное отверстия для фреона, как правило, находятся по диагонали:
- сжатый газ выводится в конце спиралей внизу;
- хладагент проходит в начале роторов вверху.
Конструкция сделана так, что спирали роторов надежно присоединялись к корпусу. Вращение происходит таким образом, чтобы от заборной камеры части воздуха выходили вбок (по разным сторонам), захватываясь вращающимися валами. На первом роторе этих порций 4, на втором 6. Вращаясь по окружности, в результате книзу спирали встречаются. Последующее кручение приводит к сильному сжатию фреона, под высоким давлением он выходит наружу.
Чтобы уяснить всю прелесть этой системы, вспомните, что у двухшнековых соковыжималок наибольший коэффициент отжима, и они могут перемалывать даже кости, когда изготовлены из металла, без большого ущерба. Такая конструкция компрессора холодильника дает возможность создать ударное давление, которого тяжело добиться в других случаях.
Напомним, что в паровую камеру холодильника проходит под впрыском масло для снижения трения. Однако это не одна причина. Вероятно, что КПД оборудования зависит непосредственно от того, как герметичны части роторов. Масло с помощью поверхностного натяжения образует пробку между корпусом и спиралями. Благодаря этому без каких-то усилий увеличивается давление. А соответственно, можно уменьшить скорость вращения для получения необходимых показателей, снизить потребляемую мощность, уменьшить технические требования к качеству и изготовлению деталей холодильника.
Способ работы холодильного компрессора далек от винтового, и, вероятно, зря. Но не надо считать, что повсюду царят поршни. Мы уже говорили, что большинство тепловых насосов имеют спиральный компрессор. Здесь находится ротор и статор. Это две спирали, вдетые друг в друга. При круговом перемещении ротора фреон сильно сжимается и выходит наружу.
Подводя итог
Итак, мы и рассмотрели, какие конструкции бывают, и каким образом работает холодильный компрессор. Теперь вы знаете, зачем нужен холодильнику компрессор, и усвоили немалый объем знаний в этой области. Данная статья объясняет, хоть и вкратце, что такое винтовые компрессоры.
Оцените статью:
(2 голоса, среднее: 5 из 5)